Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(4): e0290202, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573996

RESUMO

Verifying habitats, including the foraging and nesting areas for sea turtles, enables an understanding of their spatial ecology and successful planning of their conservation and management strategies. Recently, the observation frequency and bycatch of loggerhead (Caretta caretta) and green (Chelonia mydas) turtles have increased in the northern limit of their distribution range, in the northern part of the East China Sea and East (Japan) Sea. We conducted satellite tracking to investigate the habitat use of seven loggerhead and eight green turtles from June 2016 to August 2022 in this area, where little is known about their spatial ecology. We applied a 50 percent volume contour method to determine their main foraging areas and analyzed 6 environmental variables to characterize their habitats. Loggerhead turtles mainly stayed in and used the East China Sea as a foraging area during the tracking period, while two individuals among them also used the East Sea as a seasonal foraging area. Most green turtles also used the East China Sea as a foraging area, near South Korea and Japan, with one individual among them using the lower area of the East Sea as a seasonal foraging area. Notably, one green turtle traveled to Hainan Island in the South China Sea, a historical nesting area. Our results showed that the two sea turtle species included the East Sea as a seasonal foraging area, possibly owing to the abundance of food sources available, despite its relatively lower sea temperature. Considering that loggerhead and green sea turtles were observed using the northern part of the East China Sea and East Sea more frequently than previously known and that the sea temperature gradually increases due to climate change, conservation and management activities are required for sea turtles in these areas.


Assuntos
Tartarugas , Humanos , Animais , Oceano Pacífico , Ecossistema , Ecologia , Temperatura
2.
Sci Rep ; 13(1): 12025, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491466

RESUMO

Conservation assessments are essential for preserving biodiversity. However, many reptile species have not been evaluated owing to data deficiencies. The Slender racer (Orientocoluber spinalis) is threatened in four out of six inhabiting countries. However, despite its apparent rarity and data deficiency, the International Union for Conservation of Nature (IUCN) has classified it as a Least Concern. In this study, we combined field surveys, habitat analysis, and ecological niche models (ENMs) to identify the critical habitat characteristics of O. spinalis, evaluate its distribution status in the Republic of Korea, and register it as a nationally endangered species. Across the country, we found a few small populations on the mainland but large populations on the islands. Orientocoluber spinalis is mainly found in low-altitude ecotone habitats between grasslands and forests. Based on previous genetic and climatic studies, we propose designating it as an endangered species to conserve this species in protected areas such as national parks, and its non-isolated mainland populations can be preserved as source populations.


Assuntos
Colubridae , Espécies em Perigo de Extinção , Animais , Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , República da Coreia
3.
Ecol Evol ; 12(8): e9169, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35919392

RESUMO

Species distribution models (SDMs) across past, present, and future timelines provide insights into the current distribution of these species and their reaction to climate change. Specifically, if a species is threatened or not well-known, the information may be critical to understand that species. In this study, we computed SDMs for Orientocoluber spinalis, a monotypic snake genus found in central and northeast Asia, across the past (last interglacial, last glacial maximum, and mid-Holocene), present, and future (2070s). The goal of the study was to understand the shifts in distribution across time, and the climatic factors primarily affecting the distribution of the species. We found the suitable habitat of O. spinalis to be persistently located in cold-dry winter and hot summer climatic areas where annual mean temperature, isothermality, and annual mean precipitation were important for suitable habitat conditions. Since the last glacial maximum, the suitable habitat of the species has consistently shifted northward. Despite the increase in suitable habitat, the rapid alterations in weather regimes because of climate change in the near future are likely to greatly threaten the southern populations of O. spinalis, especially in South Korea and China. To cope with such potential future threats, understanding the ecological requirements of the species and developing conservation plans are urgently needed.

4.
Animals (Basel) ; 12(16)2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-36009748

RESUMO

With most sea turtle populations declining, activities to conserve their habitat and nesting grounds and restore their populations are being implemented worldwide. To preserve the Northwestern Pacific populations, the National Marine Biodiversity Institute of Korea has been releasing artificially propagated sea turtles, but whether these individuals join the wild population remains unknown. The present study aimed to determine the movement patterns of artificially propagated juvenile loggerhead (Caretta caretta) and green (Chelonia mydas) turtles fitted with satellite transmitters on their carapaces and released in the waters of Jeju or Yeosu, Republic of Korea, between August 2018 and April 2022. Loggerheads traveled northward to the East Sea, whereas green turtles moved west or southwest. Two 36-month-old and two 48-month-old loggerheads moved toward their potential nursery grounds and toward their feeding grounds, respectively. Three green turtles with a curved carapace length (CCL) of <40 cm moved toward their nursery or feeding grounds, while three individuals (CCL > 45 cm) moved toward their inshore foraging areas. The travel paths were closely related to the direction of local sea currents. Our results implied that releasing artificially propagated sea turtles, considering their age and CCL, can positively contribute to the conservation of Northwestern Pacific populations.

5.
Zookeys ; 1129: 21-35, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36761844

RESUMO

Studies using complete mitochondrial genome data have the potential to increase our understanding on gene organisations and evolutionary species relationships. In this study, we compared complete mitochondrial genomes between all 22 squamate species listed in South Korea. In addition, we constructed Maximum Parsimony (MP), Maximum Likelihood (ML) and Bayesian Inference (BI) phylogenetic trees using 13 mitochondrial protein-coding genes. The mitochondrial genes for all six species in the suborder Sauria followed the same organisation as the sequenced Testudines (turtle) outgroup. In contrast, 16 snake species in the suborder Serpentes contained some gene organisational variations. For example, all snake species contained a second control region (CR2), while three species in the family Viperidae had a translocated tRNA-Pro gene region. In addition, the snake species, Elapheschrenckii, carried a tRNA-Pro pseudogene. We were also able to identify a translocation of a tRNA-Asn gene within the five tRNA (WANCY gene region) gene clusters for two true sea snake species in the subfamily Hydrophiinae. Our BI phylogenetic tree was also well fitted against currently known Korean squamate phylogenetic trees, where each family and genus unit forms monophyletic clades and the suborder Sauria is paraphyletic to the suborder Serpentes. Our results may form the basis for future northeast Asian squamate phylogenetic studies.

6.
Anim Cells Syst (Seoul) ; 23(1): 64-70, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30834161

RESUMO

Differential microhabitat use may be beneficial to achieving fitness in seasonally variable environmental conditions. To explore whether the microhabitat use of the nocturnal Schlegel's Japanese gecko, Gekko japonicus, varies seasonally and depends on juvenile, male, and female reproductive groups, we investigated five categorical and five quantitative measure variables of microhabitat use in a wild population both in spring and summer. Most geckos were found on white, vertical planes of concrete and plastered brick walls. None of the categorical variables (type of location, substrate, substrate color, light source, and refuge) significantly differed according to season or group, while substrate temperature and irradiance at the location where geckos were observed and the distance from the nearest potential refuge were significantly greater in summer than in spring. The quantitative measure variables did not differ among the reproductive groups. These results suggest that G. japonicus seasonally adjusts its microhabitat use mainly in terms of quantitative measure variables rather than categorical variables.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...